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Why exactly bacteria 
colonies?

From a quantitative 
point of view

– It is possible to “keep the environment unchanged“

– A system with interactions that are simple enough to be 
captured by quantitative models 

(The interaction rules are more or less understood)

– A system whose collective behavior can be explored with 
computational models

(Theories can be modeled and tested via computer simulations)

– They can give an insight into the formation of self-organized 
biological structures

Colony of Paenibacillus vortex bacteria
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Why exactly bacteria colonies?
From a biological point of view…

– Unicellular organisms

– Living in colonies

– They are easy to handle in experiments

– They produce various spatio-temporal patterns

– The patterns are often independent of the interaction 
details - “universality”

– Dependency on environmental conditions

– Experiments can be reproduced
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The set-up of the simplest experiments 
for colony formation

Bacteria are grown on the surface of agar gel (an alga)

– “Dry” surface ( = big agar concentration)

• The cells can not move (to spread over the substrate can take 
even weeks) 

• The duplication time is much smaller 
→ proliferation is the key factor in determining the morphology

– “Soft” gel (= small agar conc.) 

Or: the bacteria produce surfactant

• The colony spreads over the substrate in a few hours
→ bacterial motion and chemotaxis are the main factors 4



Microbiological background - Proliferation

• Growth (the increase of 
the number and total 
mass of bacteria) 
strongly depends on the 
nutrient concentration

• Rate of growth (number 
of cell divisions within a 
population of unit size 
during a unit time 
interval) increases with 
the nutrient 
concentration in a 
hyperbolic manner.

A certain amount of 
nutrient is required to 

maintain the 
intracellular 

biochemical processes
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Procaryotes move in aquatic environment  by rotating 
their flagella

Bacteria can have
• One flagellum, “monotrichous”

• A pair of flagella at the opposite cell poles, “amphitrichous”

• Clusters of flagella at the poles, “lophotrichous”

• Uniformly distributed flagella over the cell membrane, 
“peritrichous”

Microbiological background - Motility
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The direction of flagellar rotation determines the motion 

The forward motion is interrupted by short intervals of “tumbling”
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Bacterial Flagellum. 5:30 mins

https://www.youtube.com/watch?v=v1NnMmw8v80 8



• Entirely different type of motility (flagella-independent)

• Slower and smoother than swimming

• Requires surface contact

• Employed by many strains when moving on surfaces

• No visible cellular structures associated – little is known 
about it

• Slime secretion

• Motion types varies greatly → probably more than one 
mechanisms exist
– Gliding along the direction of the long axis of the cell (e.g. 

Myxococcus or Flexibacter)

– Screw-like motion (e.g. Saprospira)

– Direction perpendicular to the long axis (Simonsiella)

Bacterial Motility - Gliding
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• Bacteria are attracted by nutrients (sugar, amino acids, etc.)
and repelled by harmful substances and metabolic waste 
products.

• Other environmental factors, e.g. temperature, light, oxygen 
concentration

Microbiological background - Chemotaxis

• Stochastic process: chemical 
gradients modulate the 
tumbling frequency: repressed 
when moving towards 
chemoattractants

• A molecular machinery 
compares the changes of the 
chemical concentration in 
time.
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Random and biased walks.  Left:  A random walk in isotropic environments.  When the cell's motors rotate CCW, 
the flagellar filaments form a trailing bundle that pushes the cell forward.  When one or more of the flagellar
motors reverses to CW rotation, that filament undergoes a shape change (owing to the torque reversal) that 
disrupts the bundle.  Until all motors once again turn in the CCW direction, the filaments act independently to push 
and pull the cell in a chaotic tumbling motion.  Tumbling episodes enable the cell to try new, randomly-determined 
swimming directions.  Right A biased walk in a chemo-effector gradient.  Sensory information suppresses tumbling 
whenever the cell happens to head in a favorable direction.  The cells cannot head directly up-gradient because 
they are frequently knocked off course by Brownian motion.

Source: http://chemotaxis.biology.utah.edu/Parkinson_Lab/projects/ecolichemotaxis/ecolichemotaxis.html

Microbiological background - Chemotaxis
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https://www.youtube.com/watch?v=zlFRJftA2bU

Microbiological background: Bacterial Motility. 4:35 mins

12



Morphology diagram

• A diagram showing the shape (morphology ) of the bacterium 
colony as a function of certain environmental parameters 
– temperature, humidity, chemical composition of the substrate, etc.
– Can result in different morphologies even for the same strain

• Characteristic colony shapes are assigned to the parameter pairs

• Most systematic experiments explore the relation between the 
concentration of the agar and nutrients.

• Agar concentration (consistency of the gel) determines:
• motility of the bacteria and 
• diffusibility of the nutrient

• Nutrient concentration determines:
• the proliferation rate
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Morphology diagram of Bacillus Subtilis
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Morphology diagram of Paenibacillus
dendritiformis

“A”: Fractal

“B”: Compact with rough 
boundary

“E”: Dense branching

“F”: On hard substrate a 
new, “twisted” 
morphology appears
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“Summary” of the morphology diagrams
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Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

Soft gel                 dry gel
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Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

Soft gel → - Bacteria can move

- Takes a few hours to migrate across the dish

- Random walk trajectory
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Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

Soft gel → - Bacteria can move

- Takes a few hours to migrate across the dish

- Random walk trajectory

Inter-cellular interactions are negligible

Time dependence of the bacterial 
density ρ can be described by the 
Fisher-Kolmogorov equation

19



Fisher-Kolmogorov equation

Starts as a small spot
– Diffuses due to random translation, and multiplicates

𝜕𝜌

𝜕𝑡
=𝐷𝜌𝛻

2𝜌 + 𝑓(𝜌, 𝑐)

Notations:

𝜌 = 𝜌  𝑟, 𝑡 : bacterial density

𝐷𝜌 : Diffusion coefficient (can be measured as the average 

displacement of the cells within a given time interval – see later)

𝛻 : Partial derivative with respect of the space coordinates

𝑓 = 𝑓(𝜌, 𝑐) : Bacterial multiplication

c       : Nutrient concentration
20



Fisher-Kolmogorov equation – cont.
𝜕𝜌

𝜕𝑡
=𝐷𝜌𝛻

2𝜌 + 𝑓(𝜌, 𝑐)

• Dρ, (diffusion coefficient) can be determined from the 
(measurable) squared displacements d2(t) of the 
individual cells during a time period t as :

𝑑2 𝑡 = 2𝐷𝜌𝑡

(overline: averaging among the cells)

• f(ρ,c): bacterial multiplication
– When ρ is small, cells proliferate with a fixed rate 

→ exponential growth
– In practice, even with unlimited nutrient supply, there’s a 

certain threshold ρ* for the density (e.g., accumulation of 
toxic metabolites)

– We choose cell density units such that ρ* =1 21



Fisher-Kolmogorov equation – cont.
𝜕𝜌

𝜕𝑡
=𝐷𝜌𝛻

2𝜌 + 𝑓 𝜌, 𝑐

– We choose ρ*=1 (threshold-density, above which cell-density can not increase)

– Growth rate decreases as ρ→ ρ*=1, and f(1)=0

– The specific form of f is unimportant, be will use 

𝑓 𝜌, 𝑐 = 𝑅 𝑐 ∗ 𝜌(1 − 𝜌)

which satisfies the above criteria

– R (c) is a function expressing 

how the proliferation depends on the 

nutrient concentration

R(c)=   for small c values R~c

for big c values R is constant 22



Fisher-Kolmogorov equation – cont.

Dependency on ρ :

When ρ is small, cells proliferate 
with a fixed rate 

→ exponential growth

In practice, even with unlimited 
nutrient supply, there’s a certain 
threshold ρ* for the density (e.g., 
accumulation of toxic metabolites)

23

R(c)=   for small c values R~c
for big c values R is const.

Some amount is needed for 
maintaining the intracellular 
biochemical process

𝑓 𝜌, 𝑐 = 𝑅 𝑐 ∗ 𝜌(1 − 𝜌)

Dependency on c :
Hyperbolic manner



Numerical solution of the Fisher-
Kolmogorov equation in 1 D

𝜕𝜌

𝜕𝑡
= 𝐷𝜌𝛻

2𝜌 + 𝑓 𝜌, 𝑐 = 𝐷𝜌𝛻
2𝜌 + 𝑅(𝑐)𝜌(1 − 𝜌)

Numerical solution:  the growing domain of the colony expands 
with a constant speed 𝑣 ≈ 𝑣∗ where

𝑣∗ = 2 𝑅𝐷𝜌
24



Compact morphology

Abundant nutrient → compact colony 

Either smooth or irregular perimeter

• Dry gel and/or un-motile bacteria

– Bacteria exert mechanical pressure on their 
environment (in order to expand to their preferred 
size)

– Inter-cellular interactions

– Modified Fisher-Kolmogorov equation

– Irregular (self-affine) surface

28



Cell-cell interaction
• When the bacteria are not independent during the spreading of 

the colony (e.g. non-motile cells)
– Abrupt change in the cell density at the border of the colony

• Propagation of the boundary: expansions of the cell volumes 
inside the colony
– The bacteria can not expand to their preferred size, they exert 

mechanical pressure on their surroundings

– Large densities: p ~ ρ-ρ0 (ρ0 threshold density for close-packed colonies)

• For large density values the displacement is: 𝑣 = 𝐷0𝛻(𝜌 − 𝜌0)
(D0: diffusion coef., similarly to Dρ in the F-K. eq.)

• Modified F-K. eq:  𝜕𝑡𝜌 =  
𝐷0𝛻

2𝜌 + 𝑓 𝜌 for 𝜌 > 𝜌0
𝑓 𝜌 otherwise

• In such cases the colony boundary is self -affine 29



The boundary of a Bacillus subtilis colony (OG-
01 strain) grown on hard agar

Long bundles of chains of individual cells consist the colony of the 
B. subtilis OG-01 strain grown on hard agar. Note the abrupt 

change in cell density at the boundary.
30



The formation of self-affine boundaries – the Eden model

• One of the earliest method to generate self-affine 
objects (1961)

• Cells grown on a lattice

• One single rule for growing the colony:

– In each step, one of the lattice sites 

next to the populated areas is 

chosen randomly and occupied.

- Or: in each time step, a randomly 

chosen (non-motile) bacterium proliferates.

• Primitive, but universal model
31



Eden-model

• Initial step: 

1 occupied cell

• Variants:
– Each position with same probability

– Higher number of occupied neighbors increase the 
probability

• Variants of the model leave the statistical 
features of the developing clusters invariant in 
the asymptotic limit.

A typical colony in the Eden model grown on a 
strip of 256 lattice units.
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Simulations of the Eden model in 2D

– The lattice can destroy the

rotational symmetry

– Continual model is more

realistic

https://youtu.be/hluvLTwMFOs
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Summary of the Eden model

• The surface contains “overhangs”

• Basic assumptions:
– The units can not move (no “diffusion”)

– Multiplication on the surface

• The model is simple but can be applied to many 
phenomena – “universality”

• The result is a self-affine surface

• KPZ model
– The time evolution of the profile of a growing interface

– Kardar, Parisi, Zhang: Dynamic scaling of growing surfaces. 
Physical Review Letters (1986)
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The Kardar-Parisi-Zhang (KPZ) equation

𝜕𝑡ℎ = 𝜈𝜕𝑥
2 ℎ +

𝜆

2
(𝜕𝑥ℎ)

2+𝑢 + 𝜂

• ℎ : Height of the surface

• 𝜕𝑡 : Partial derivative with respect to time

• 𝜕𝑥 : Partial derivative with respect to the space

coordinate x; ( 𝜕𝑥
2 : second derivative )

• 𝜈 : surface tension coefficient (nu)

• 𝑢 : growth speed, perpendicular to the surface

• 𝜂 : uncorrelated noise (stochastic)
35



The KPZ step-by-step

Speed of vertical growth:

𝜕𝑡ℎ 𝑥, 𝑡

Components:

1. Surface tension term  𝜈𝜕𝑥
2 ℎ

– 2nd derivative negative → local max (“top of a hump”)

– 2nd derivative positive → local min (“bottom of a swale”)

– Tends to smoothen the interface

– Does not permit discontinuities (large jumps) in h

– 𝜈: surface tension coefficient

36

𝜕𝑡ℎ = 𝜈𝜕𝑥
2 ℎ +

𝜆

2
(𝜕𝑥ℎ)

2+𝑢 + 𝜂

• ℎ : Height of the surface

• 𝜕𝑡 : Partial derivative with respect to time

• 𝜕𝑥 : Partial derivative with respect to the space

coordinate x; ( 𝜕𝑥
2 : second derivative )

• 𝜈 : surface tension coefficient (nu)

• 𝑢 : growth speed, perpendicular to the surface

• 𝜂 : uncorrelated noise (stochastic)



The KPZ step-by-step

Speed of vertical growth:  𝜕𝑡ℎ 𝑥, 𝑡
2nd component: makes the surface lumpy

∆ℎ =
𝑢 ∙ ∆𝑡

cos𝜑
= 𝑢 ∙ ∆𝑡

1

cos𝜑
= 𝑢 ∙ ∆𝑡 1 + 𝑡𝑔2𝜑 ≈

≈ 𝑢 ∙ ∆𝑡 1 +
𝑡𝑔2𝜑

2
= 𝑢 ∙ ∆𝑡+

𝑢∙∆𝑡

2
𝑡𝑔2𝜑 ≈

≈ 𝑢 ∙ ∆𝑡+
𝑢 ∙ ∆𝑡

2
(𝜕𝑥ℎ)

2

During a small Δt period of time the growth of the surface:
∆ℎ

∆𝑡
≈ 𝑢 +

𝑢

2
(𝜕𝑥ℎ)

2

Due to other effects 
𝑢

2
→ 

𝜆

2
(more general equation)

1D→2D

• 𝑥 → r 1 + 𝑡𝑔2𝑥 =
1

𝑐𝑜𝑠2𝑥
; 

• 𝜕𝑥 → 𝛻 if ɛ<<1, then 1 + 𝜀 ≈ 1 +
𝜀

2
if 𝜑 ≪ 1, then tg (𝜑) ≈ 𝜕𝑥ℎ
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𝜕𝑡ℎ = 𝜈𝜕𝑥
2 ℎ +

𝜆

2
(𝜕𝑥ℎ)

2+𝑢 + 𝜂

• ℎ : Height of the surface

• 𝜕𝑡 : Partial derivative with respect to time

• 𝜕𝑥 : Partial derivative with respect to the space

coordinate x; ( 𝜕𝑥
2 : second derivative )

• 𝜈 : surface tension coefficient (nu)

• 𝑢 : growth speed, perpendicular to the surface

• 𝜂 : uncorrelated noise (stochastic)

cos𝜑 =
𝑢 ∙ ∆𝑡

∆ℎ



The KPZ step-by-step
1D→2D

𝜕𝑡ℎ  𝑟, 𝑡 = 𝜈 ∙ 𝛻2ℎ  𝑟, 𝑡 +
𝜆

2
𝛻ℎ

2
+ 𝑢 + 𝜂  𝑟, 𝑡

• Smoothening component (surface tension)

• Roughening

• noise: 𝜂= 𝜂  𝑟, 𝑡 : stochastic (=non-deterministic), uncorrelated in space and time

Comments:
• In case of uncorrelated 𝜂  𝑟, 𝑡 noise the resulting surface is self affine

• In this case (and in the Eden model) the roughness exponent H=1/2, 
in contrast to experiments, where H≈0.7, …, 0.8

• Reason: in the KPZ the noise is uncorrelated in time (↔ reality!) 38

𝜕𝑡ℎ = 𝜈𝜕𝑥
2 ℎ +

𝜆

2
(𝜕𝑥ℎ)

2+𝑢 + 𝜂

• ℎ : Height of the surface

• 𝜕𝑡 : Partial derivative with respect to time

• 𝜕𝑥 : Partial derivative with respect to the space

coordinate x; ( 𝜕𝑥
2 : second derivative )

• 𝜈 : surface tension coefficient (nu)

• 𝑢 : growth speed, perpendicular to the surface

• 𝜂 : uncorrelated noise (stochastic)



KPZ with quenched noise

• Uncorrelated noise (in time):

– If the noise is 𝜂  𝑟, 𝑡 at the position  𝑟 at time 𝑡, then the noise is 
“independent” of 𝜂  𝑟, 𝑡 at the same place, at time 𝑡 + ∆𝑡.

• In other words: 

– If the spreading of the colony sticks at time 𝑡 at position  𝑟 due to 
the local inhomogeneity 𝜂  𝑟, 𝑡 of the surface (gel), then at the 
same position, Δt later, the noise would be independent 
(uncorrelated), that is, the surface would move on.

• In contrast, the reality is that

– Such noises are often constant in time

– The colony moves in an inhomogeneous medium, in which the 
inhomogeneity is constant in time

– The noise “quenches” into the medium. “quenched noise” 39



• If the noise is constant (and fixed) in time:

– If the spread of the colony surface sticks at a given point  𝑟, then 
this “halt” can be extensive in time, since the media does not 
change.

– Results in a surface 
proceeding in a 
hoping/jiggling 
manner 
(points are blocks).

40

KPZ with quenched noise
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KPZ with quenched noise

• Defining the 𝜂  𝑟, 𝑡 quenched noise:

– Let us consider a Δ(u) function with the following properties:  

• If u is close to 0, then ∆ 𝑢 ≅ 1 (in a small, finite interval), and

• Everywhere else Δ(u)=0.

• a “blurred” Dirac-delta

– 𝜂  𝑟, 𝑡 ≔ 2𝐷  𝜂( 𝑟, ℎ( 𝑟, 𝑡))

•  𝜂 is normalized noise

• whose spatial autocorrelation is 𝐶 𝜂  𝑟, 𝑟′ = Δ(  𝑟 )Δ( 𝑟′ )

– That is, correlated in a very small spatial interval

• D : average magnitude of the noise as 𝐶 𝜂(0,0) = 2𝐷

– We incorporate this quenched noise into the KPZ, we get: 

𝜕𝑡ℎ  𝑟, 𝑡 = 𝜈 ∙ 𝛻2ℎ  𝑟, 𝑡 +
𝜆

2
𝛻ℎ

2
+ 𝑢 + 𝜂  𝑟, ℎ( 𝑟, 𝑡)
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KPZ with quenched noise

𝜕𝑡ℎ  𝑟, 𝑡 = 𝜈 ∙ 𝛻2ℎ  𝑟, 𝑡 +
𝜆

2
𝛻ℎ

2
+ 𝑢 + 𝜂  𝑟, ℎ( 𝑟, 𝑡)

• By “appropriate” choice of the time and length units the 
parameters λ, ν and u can be transformed out 

– the λ=ν=u=1 case:

𝜕𝑡ℎ = 𝛻2ℎ +
1

2
𝛻ℎ

2
+ 1 + 𝜂 = 𝛻2ℎ + 1 + 𝛻ℎ

2
+ 𝜂

(where the magnitude of η is 𝜂𝜂 = 𝐶 𝜂(0,0) = 2𝐷)

• Two extreme cases:

1. 𝐷 ≪ 𝐷∗~1

2. 𝐷 > 𝐷∗~1



KPZ with small quenched noise

• First Case: 𝐷 ≪ 𝐷∗~1

• The interface is never pinned, advances with a steady velocity

• Fluctuating noise with some finite temporal correlations

• The standard KPZ can be applied

• Resulting interfaces with H=1/2.

• Experimental support: Colonies grown on soft agar gel (small 
pinning effect) showed standard KPZ-like behavior with surface 
characterized by H=1/2. 
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KPZ with big quenched noise

• Second Case: 𝐷 > 𝐷∗~1

• The interface is pinned at some certain points, for an extended 
period of time (until the neighboring segments pull it out)

• If the density of the pinning points is high enough, then the 
propagation of the whole surface can be blocked.

• The shape of the frozen colony is determined by the distribution 
of these pinning sites (and independent of the growth dynamics).

The surface roughening can be mapped onto a    
directed percolation problem:

 finding directed and connected paths

Let us consider a lattice instead of the continuous case

(discrete model, regarding both h and the location (x,y) )

44



Directed percolation

• The chain of the pinning sites define a directed percolation 
cluster (if it exists).

– Complete blocking of the interface propagation appears when 
there is a directed, connected path (a directed percolation cluster)

– The propagation stops along these clusters 45

1. Let us define each lattice site as 
2. “pinning” with a probability 0<p<1.  

(gray squares)
3. We start from one end of the panel
4. On the pinning sites we can move 

ahead, up and down (but not 
backwards)

5. Do we reach the other end of the 
board?



Correlation lengths of directed 
percolation clusters

• DPC is characterized by two correlation length:
1. Parallel to the interface (to the preferred direction) 𝜉∥
2. Perpendicular to the interface (to the preferred direction) 𝜉⊥

• There is a critical probability pc (defining the density of the pinning sites)
𝜉∥~ 𝑝 − 𝑝𝑐

−𝜈∥ and    𝜉⊥~ 𝑝 − 𝑝𝑐
−𝜈⊥

with
𝜈∥ = 1.733 and 𝜈⊥ = 1.097 (numerical results)

• The width of the interface:  𝑤 ≅ 𝜉⊥
• Complete blocking of the interface when 𝜉∥=L 

(L is the system size)

• The width of the interface at the critical point:

𝐿𝐻~𝑤 ≅ 𝜉⊥~ 𝑝 − 𝑝𝑐
−𝜈⊥~𝜉∥

𝜈⊥
𝜈∥ ≈ 𝐿

𝜈⊥
𝜈∥ →      𝐻 =

𝜈⊥

𝜈∥
= 0.633
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Directed percolation 

• The numerical result for the (discrete) directed percolation 
problem is H=0.633 
– (complete blocking)

• Experimental results: H≈0.7-0.8

• Reason: the observed colonies have both blocked and freely 
moving parts → higher roughness exponent (H) than for the 
blocked interface.
– Numerical simulations: 

H≈0.71-0.75 

(close to the observations)

• KPZ with quenched noise

and the DP simulations

have the same results
47



Branching morphology

48

• Nutrient-poor agar substrate
• Complex, branching colonies
• Not exhibited by all strains 

(but by many)

Baillus subtilis colony, under 
nutrient-poor conditions. 8 

and 19 days after inoculation. 



Branching morphology – colony formation

• Basic assumption: 
– the growth of the colony is diffusion-limited:

– The multiplication of the bacteria is determined by 
the locally available nutrient
• At the beginning: local nutrient is enough to maintain the 

growth

• After some bacterial multiplication, nutrient deprivation 
progresses in and around the colony

• Further growth depends on the diffusive transport from 
distant regions of the petri-dish

– Experimental support
• Non motile B. subtilis grows 

only towards nutrient-rich 

regions 
49



Branching morphology – colony formation

• The speed of the growth is determined by the 
nutrient diffusion

• The colony develops 
towards the nutrient

• Instability:
– Due to some random perturbation a small part of the 

colony advances “ahead” (towards some nutrient)
– This part of the colony gets closer to the nutrient
– Can multiply faster

• This process stops at a certain curvature
– Certain amount of neighboring cells are needed
– A certain “steady shape” is set

• New perturbation: new branch 50



Diffusion-Limited Aggregation (DLA)

• The definition of the basic DLA algorithm:

– Start: 1 cell 

– In each time step:

• A particle (performing random walk) departs from infinity

(in simulations from finite distance)

• Sticks to the colony upon graze

• Result: Fractal-type clusters

51Typical DLA cluster with 50, 000 particles
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Relation to bacterium colonies

• Random walk of the particle ~ diffusion of the nutrient

• Sticking to the colony ~ bacterium proliferation

• Non-motile bacteria! 

• Very simple model (1 “nutrient-unit” = 1 multiplication) 
generating realistic formations → “universality”
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Refinement of the DLA model –
Modeling non-motile bacteria

• Assumptions:
– Bacteria interact with each other
– Each particle (cell) is characterized by

• Space coordinate xi

• Energy state Ei (or cell cycle state)
– Ei <0 : spore state.  Without nutrient, remains in this state
– 0<Ei <1 : right after multiplication 
– Ei >1 : has enough energy to multiply

• Notations:
 𝜔𝑖 : nutrient consumption rate
 𝜅 : conversion factor relating the maximal nutrient consumption rate with the 

shortest cell cycle time 
(nutrient → energy conversion)

 𝜖 : generic “maintenance” term (not directly contributing to growth)

The energy-level of bacterium i:     uptake - consumption

𝑑𝐸𝑖
𝑑𝑡

= 𝜅 ∙ 𝜔𝑖 − 𝜖
54



Modeling non-motile bacteria –
limits of the nutrient uptake

• Further notations:
 𝜔𝑚𝑎𝑥 : maximal nutrient uptake rate of the cells
 𝜅 : efficiency of the enzymatic reaction converting  the nutrient 

into energy
 𝑐(𝑥𝑖) : nutrient concentration (around cell i)
 𝜌(𝑥𝑖) : local cell density 
 𝜔0𝑐 : maximal diffusive transport from the substrate to the cell
 𝜔𝑖 : nutrient consumption rate (of bacterium i)

• The rate with which the cell-mass grows:

𝜌 𝑥𝑖 𝜔𝑖 = 𝑚𝑖𝑛 𝜔𝑚𝑎𝑥𝜌 𝑥𝑖 , 𝜔0𝑐 𝑥𝑖

→ The nutrient-uptake is limited by the enzymatic rates  and local nutrient concentration
(the maximal speed with which cell i can take in the nutrient)
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Modeling non-motile bacteria –
How the local nutrient concentration varies

• Bacteria use up the nutrient

• Changes in c are given by the diffusion equation with 
the appropriate sink terms at the position of the 
active particles:

𝑑𝑐

𝑑𝑡
= 𝐷𝑐𝛻

2𝑐 − 

𝑖

𝜔𝑖𝛿(𝑥 − 𝑥𝑖)
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Diffusion Sinks: the cell at location 
xi consumes the nutrient 
with rate ωi



Summary: non-motile bacteria in nutrient-poor environment

(i) The energy-level of cell i 

𝑑𝐸𝑖
𝑑𝑡

= 𝜅 ∙ 𝜔𝑖 − 𝜖

(ii) Cell-mass growth rate

𝜌 𝑥𝑖 𝜔𝑖 = 𝑚𝑖𝑛 𝜔𝑚𝑎𝑥𝜌 𝑥𝑖 , 𝜔0𝑐 𝑥𝑖

(iii) Changes of the local nutrient 
concentration

𝑑𝑐

𝑑𝑡
= 𝐷𝑐𝛻

2𝑐 − 

𝑖

𝜔𝑖𝛿(𝑥 − 𝑥𝑖)
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𝐸𝑖 : energy level of cell i
𝜅 : efficiency of the enzymatic 
reaction converting  the 
nutrient into energy
𝜔𝑖 : nutrient consumption 
rate
𝜖 : generic “maintenance” 
term (not directly contributing 
to growth)
𝜌(𝑥𝑖) : local cell density 
𝜔𝑚𝑎𝑥 : maximal nutrient 
uptake rate of the cells
𝑐(𝑥𝑖) : nutrient concentration 
(around cell i)
𝜔0𝑐 : maximal diffusive 
transport from the substrate to 
the cell
𝐷𝑐 : nutrient diffusivity



Results: Modeling non-motile bacteria with 
the refined DLA model
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Simulation results: Morphology diagram generated by the model with non-motile particles 
as a function of the initial nutrient concentration (c0)and nutrient diffusivity (Dc). The

colonies were grown (in the computer) until either their size or the number of bacteria
reached a threshold value.

Related experiments: the 
morphology diagram of 

the non-motile B. subtilis
OG-01b strain



Motile bacteria with the DLA model
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• Rules (i)-(iii) remain the same
– (i) energy-level of cell i 
– (ii) cell-mass growth rate
– (iii) changes of the local nutrient concentration

• New rules:
– (iv) The active particles move randomly (with Brownian 

motion) within a boundary:
𝑑𝑥𝑖
𝑑𝑡

= 𝑣𝑜  𝑒

where   𝑒 is a unit vector pointing in a random direction
– (v) The propagation of the bacteria is assumed to be 

proportional to the local density of the active cells. 
Collisions of the particles with the boundary is counted, and 
when a threshold value (Nc) is reached, the neighboring cell 
is occupied as well. (the boundary shifts forward)



Results: Modeling motile bacteria with the refined 
DLA model (on hard agar gel)
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Morphology diagram generated by the model with motile 
bacteria as the function of the initial nutrient 

concentration (Co) and agar gel “hardness”, (the threshold 
value Nc for the colony borderline displacement). 

Corresponding experimental 
results: Morphology diagram 

of Paenibacillus dendritiformis. 
Agreement with the model 

results within a limited region 
of the parameters, but it fails 

to predict the formation of the 
thin, straight radial branches 

at very low food 
concentrations. 



Simulation results:

• Nice agreement with the experiments, but
• Fails to explain the transition between the

Fractal-type       and    non-fractal-type  colonies

Solution: assuming repulsive chemotaxis signaling among the cells. Due to 
the repulsion the cells by-pass each other: the random Brownian motion 
becomes biased. 
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Simulation results without 
(a) and with (b) repulsive 
chemotaxis signaling. 


